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Molecular-dynamics simulations are used to study the effective interactions in charged stabilized colloidal
suspensions. We focus on highly charged macroions in the limit of low salt concentrations. Within this regime,
nonlinear corrections to Debye-Hückel �DH� theory have to be considered. For non-bulk-like systems, such as
isolated pairs or triples of macroions, we show that nonlinear effects can become relevant, which cannot be
described by the charge renormalization concept �S. Alexander et al., J. Chem. Phys. 80, 5776 �1984��. For an
isolated pair of macroions, we find an almost perfect qualitative agreement between our simulation data and
DH theory. However, on a quantitative level, neither DH theory nor the charge renormalization concept can be
confirmed in detail. This seems mainly to be related to the fact that for small ion concentrations, microionic
layers can strongly overlap, whereas, simultaneously, excluded volume effects are less important. In the case of
isolated triples, where we compare between coaxial and triangular geometries, we find attractive corrections to
pairwise additivity in the limit of small macroion separations and salt concentrations. These triplet interactions
arise if all three microionic layers around the macroions exhibit a significant overlap. In contrast to the case of
two isolated colloids, the charge distribution around a macroion in a triple is found to be anisotropic.
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I. INTRODUCTION

1In order to simplify the description of colloidal systems,
one often tries to determine effective interactions between
the colloidal particles, thus integrating out the solvent’s de-
grees of freedom �1�. This is not a trivial task, because in
general the effective interactions depend on the thermody-
namic state of the system, and one is often confronted with
the problem of thermodynamic inconsistencies �2�. A prob-
lem that is of particular interest is that of effective interac-
tions between charged colloids �macroions� in an electrolyte
solution. On a mean-field level, such a system can be de-
scribed by the Poisson-Boltzmann �PB� equation �3�. The
linearized version of this equation is the basis of the
Derjaguin-Landau-Verwey-Overbeek �DLVO� theory for
charged colloids �4�, and we will refer to it in the following
as the Debye-Hückel �DH� limit of the PB equation �5�. In
the DH limit, the problem can be solved analytically and
yields a screened Coulomb potential for the effective inter-
actions between the macroions. The characteristic range of
this potential is given by the Debye length �−1, which is
controled by solvent properties such as the salt concentra-
tion.

The physical picture of the DH description is rather ap-
pealing: Due to the charge of a macroion, a layer of thickness
�−1 is formed around it, consisting of oppositely charged
microions �counterions�, leading to a screening of the bare
Coulomb interaction. Although the DH description is only
valid for weakly charged macroions and if correlation effects
between the microions in the electrolyte solution can be ne-
glected, it is tempting to characterize also the effective inter-
actions between highly charged macroions by a potential of
screened Coulomb form. Indeed, this is the idea of the fa-
mous concept of charge renormalization that has been put

forward by Alexander et al. �6�. It is based on the observa-
tion that in the framework of the so-called cell model �see
below�, the numerical solution of the nonlinear PB equation
can be fitted farther away from the macroions’ boundaries by
a screened Coulomb potential with a renormalized charge
Zeff�Z �with Z the bare charge of a macroion�. Trizac et al.
�7� recently extended the numerical recipe of Alexander et al.
by providing an analytical scheme to calculate Zeff as well as
the effective screening length and the effective salt concen-
tration.

As already mentioned, DH theory is based on the linear-
ized PB equation, which implies pairwise additivity of inter-
action energies �on the level of the macroions�. On the other
hand, for highly charged macroions, nonlinearities imply the
occurrence of many-body interactions and thus pairwise ad-
ditivity does not hold. The simplest system, in which many-
body effects could be expected, consists of three isolated
macroions in an electrolyte solution. Indeed, such a system
has been studied in a recent experiment using scanned opti-
cal line tweezers �8,9�. In this work, charge stabilized silica
particles with a diameter of about 1 �m suspended in water
were considered. It was possible to measure three-body in-
teractions directly, and it was found that, in agreement with
numerical solutions of the nonlinear PB equation �1,10�,
three-body contributions to the total interaction energy are
attractive.

Also molecular-dynamics �MD� computer simulations
have been used to investigate systems of “isolated” macroion
pairs and triples �11–15�. In these studies, charged colloids
were investigated in the framework of the so-called primitive
model. In this model, a system of macroions, counterions,
and salt ions is considered without explicitly taking into ac-
count the uncharged part of the solvent. Based on the primi-
tive model, Allahyarov and Löwen found that DH theory
works well for a system of two macroions �11�, and, in
agreement with experiment �8,9� and PB theory �16�, that
three-body contributions are attractive in the case of three
macroions �12�. These authors also studied a system of two*Electronic address: horbach@uni-mainz.de
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macroions, in which uncharged solvent particles were added
to the electrolyte solution �13�. An interesting finding of this
work was that the neutral solvent leads to a renormalized
charge, which is smaller than the bare charge of the macro-
ions, similar to the concept proposed by Alexander et al. �6�.
In a different simulation study by Tehver et al. �14�, the
counterions were introduced via density distributions in the
framework of a density-functional theory. Surprisingly, in the
case of three macroions, no evidence for many-body forces
was found, and the forces could be well described by DH
theory.

In this work, MD simulations are presented that tie in
with the previous simulation studies. However, we extend
the latter studies by investigating systematically the effect of
salt concentration on colloidal interactions in systems of two
and three isolated macroions. Compared to previous studies,
this allows a more detailed discussion of nonlinear effects in
such systems and a quantitative test of pairwise additivity in
the case of three macroions.

We consider systems of two and three highly charged
macroions in a primitive model solvent. In the two-particle
case, we check to what extent DH theory describes the ef-
fective interactions; thereby, the effect of nonlinearities is
quantified. In a second step, we address the influence of non-
linear effects on three-body interactions. In order to study
these effects, a triple of macroions is considered in two dif-
ferent geometries by placing the macroions on an equililat-
eral triangle or along a straight line. We check whether the
concept of charge renormalization can also be applied to iso-
lated pairs or triples of particles. Furthermore, we ask for the
validity of the mean-field description and how effective in-
teractions develop from the two-particle case to the bulk.
Our major concern is the influence of nonlinearity, which can
be seen for high macroion charges and low salt concentra-
tions. We especially consider cases of overlapping or inter-
acting Debye layers in the case of non-bulk-like macroion
configurations.

Our paper is organized as follows: After briefly discussing
some results of DH theory and the concept of charge renor-
malization, we give an overview of the simulation details. In
Sec. IV A, we present our results for systems that consist of
a pair of macroions, and in Sec. IV B, systems with macro-
ion triples are considered. Finally, we discuss the results and
draw some conclusions.

II. DH POTENTIAL, PB EQUATION, AND THE CONCEPT
OF CHARGE RENORMALIZATION

In this section, we consider charged spherical macroions
of diameter � and positive charge Ze �here, e is the elemen-
tary charge and Z is the valency�. They are immersed into a
polar, structureless medium with dielectric constant �. This
medium is characterized by the Bjerrum length �B
=e2 / �4��kBT�, i.e., the distance at which the electrostatic
energy between two point charges equals the thermal energy
kBT.

In the DH limit, the interaction potential between two
macroions, separated by a distance r, is given by a screened
Coulomb �Yukawa� potential �3�,

u�r� = kBT�B�Z exp���/2�
1 + ��/2

�2exp�− �r�
r

, �1�

where

� = �4��B�2ns + Znc�/V �2�

is the screening parameter, nc represents the number of mac-
roions, and ns is the number of added salt ion pairs. In Eq.
�2�, it is assumed that the electrolyte solution is formed by
monovalent microions in a system of total volume V. The
microions consist of Znc negatively charged counterions that
neutralize the charge of the macroions and 2ns salt ions,
consisting of half counterions and half oppositely charged
coions. The inverse of the screening parameter, the so-called
Debye length RD=1/�, “measures” the thickness of the neu-
tralizing counterion layer around the macroions. Equation �2�
shows that RD can be varied by changing the properties of
the solvent, in particular the salt concentration.

Alexander et al. �6� have demonstrated that many charged
colloidal systems with highly charged macroions can be de-
scribed to some extent by a Yukawa potential of the form of
Eq. �1�, although the DH limit is restricted to particles with
small charge.

Highly charged colloids have a strong tendency to form
ordered structures at relatively low densities, i.e., at densities
where the mean distance between neighboring macroions is
much larger than their size. In such systems, each macroion
has a very similar environment of microions, and thus a rea-
sonable approximation is to reduce the problem of comput-
ing the effective many-particle interactions between macro-
ions to that of determining a mean-field potential of one
particle in its Wigner-Seitz �WS� cell surrounded by a reser-
voir of salt ions �6�. For spherical macroions, the WS cell is
approximated by a sphere of radius R. Then, one considers
the nonlinear PB equation for the single particle with appro-
priate boundary conditions �6�,

�2u�r� =
e�s

4��
�exp� eu�r�

kBT
	 − exp�−

eu�r�
kBT

	�
��/2 � r � R� , �3�

n� · �u�r� =
Ze

���2 �r = �/2� , �4�

n� · �u�r� = 0 �r = R� �5�

with n� the normal vector pointing outward from the sphere’s
surface and �s the salt concentration in the reservoir. From
Eq. �3� with boundary conditions �4� and �5�, an effective
charge Zeff and an effective screening parameter �eff can be
extracted that can be used to define an effective Yukawa
potential,

ueff�r� = kBT�B�Zeff exp��eff�/2�
1 + �eff�/2

�2exp�− �effr�
r

. �6�

In the original paper by Alexander et al. �6�, the following
recipe has been proposed to obtain Zeff and �eff: The
screening parameter �eff is determined by the microion den-
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sities n±
R=�0 exp�±eu�r� / �kBT�� at the WS cell boundary via

�eff
2 =4��B�n+

R+n−
R�. The effective charge Zeff is fixed as fol-

lows: First, Eq. �3� is linearized at r=R. For the linearized
equation, a solution is determined such that the linear and the
nonlinear solution match up to the second derivative at the
cell boundary. Finally, Zeff is calculated from the integral
over the charge density associated with the linear solution.

A more elegant recipe to obtain Zeff and �eff has recently
been proposed by Trizac et al. �7�. They show that the full
numerical solution of the nonlinear PB equation is not
needed to estimate the latter parameters. Instead, only the
solution uR at the cell boundary is required. Thus, only lin-
earized equations have to be solved, and this can be done
analytically. For Zeff, Trizac et al. �7� find

Zeff =
	0

�eff�B

��eff

2 �R/2 − 1�sinh��eff�R − �/2�� + �eff�R

− �/2�cosh��eff�R − �/2��� , �7�

with 	0=tanh�uR�. Equation �7� implies Zeff
Z, where the
effective charge �also called “renormalized charge”� can be
an order of magnitude smaller than the bare charge.

The effective screening parameter �eff is related to the
effective salt concentration and Zeff via �7�

ns
eff/V =

�eff
2

8��B
�1 − 	0

2��1 − �� −
1

2V
Zeffnc�1 − 	0� , �8�

where ns
eff /V is the salt concentration �with V the volume of

the system� and nc=1 represents the number of macroions
per WS cell. The physical interpretation of the latter equation
is related to the so-called Donnan effect. Since a macroion
occupies a finite volume inside its WS cell, the microions are
partially expelled. Thus, the salt concentration outside the
WS cell can be higher than inside the colloid compartement,
or, in other words, there is an effective salt concentration that
is smaller than the actual one, i.e., ns

eff�ns.
For dilute systems, where the Donnan effect should not be

relevant, i.e., for 	0 ,�→0, the effective salt concentration
matches the actual one, and hence Eq. �8� can be rewritten as

�eff
2 = 4��B�Zeffnc + 2ns�/V . �9�

Thus, setting ns
eff=ns leads back to a one-parameter problem.

It follows from Eq. �9� that for monovalent microions, Zeff
=Z also implies �eff=�.

We emphasize that the systems considered in the follow-
ing do not match with the assumptions made in Alexander’s
concept of charge renormalization. In this work, “non-bulk-
like” systems are considered, for which the definition of a
WS cell is not meaningful. Moreover, whereas charge renor-
malization is applied to distances far away from the surface
of a macroion, we are interested in relatively small distances
between macroions and thus also in the potential of mean
force close to their surfaces.

III. DETAILS OF THE SIMULATION

Using classical MD simulations, we study charged colloi-
dal suspensions in the framework of the so-called primitive

model. We consider systems of two or three positively
charged macroions of valency Z�Zm=255 and monovalent
microions of valency Zct=−1 �counterions� and of valency
Zco= +1 �coions�. The interaction potential between an ion of
type � and an ion of type  �� ,=m , ct , co�, separated by a
distance r from each other, is given by

u� =
Z�Ze2

4��r
+ A� exp
− B��r − ���/��� , �10�

where the dielectric constant is set to �=79�0 �with �0 the
vacuum dielectric constant�, which corresponds to the value
for water at room temperature. The parameter �� is the
distance between two ions at contact, ��=R�+R, where R�

is the radius of an ion of type �. In our simulations, we used
Rm=10 nm and Rct=Rco=0.01Rm. The choice of the latter
values guarantees that depletion effects are not relevant. The
exponential in Eq. �10� is an approximation to a hard-sphere
interaction for two ions at contact. For the parameters A�

we chose Amm=1.84 eV, Amct=Amco=0.055 65 44 eV, and
Actct=Actco=Acoco=0.0051 eV. The parameters B� are all set
to 3.0. The long-ranged Coulomb part of the potential and
the forces were computed by Ewald sums in which we chose
�=0.05 for the constant and a cutoff wave number kc

=2��66/L in the Fourier part �17�. The linear dimension L
of the simulation box is L=159.026 nm, using periodic
boundary conditions.

Since the potential, Eq. �10�, is long-ranged, one has to
consider the possible emergence of finite-size effects. How-
ever, in our simulations, the distance of a macroion to its
next periodic image was always larger than 7� �with �
��mm�, and, as discussed in the next section, at this distance
the Coulomb interaction is sufficiently screened. Instead of
using periodic boundary conditions, an alternative approach
would be to confine the system by walls �11,12�. However,
due to the interaction of the ions with the walls, also in this
case finite-size effects are relevant �indeed in Refs. �11,12�, a
correction term had to be introduced to estimate the “bulk”
effective force between macroions�.

In order to determine the effective forces between macro-
ions at a distance r, the macroions are fixed by decoupling
macroionic and microionic time scales. This is achieved by
assigning a mass to the macroion which is 106mct �with mct
=mco the mass of the microions�. All the simulations were
done at the temperature T=298 K. Thus, the Bjerrum length
for our system is �B0.71 nm. The number of added coions
was varied from ns=0 to ns=1280. In molar units, this cor-
responds to an added salt concentration from 0 to 1.06
�10−3 mol/ l. Being nc� the number of macroions in the sys-
tem, charge neutrality requires ntot=Znc�+2ns for the total
number of microions.

The equations of motion were integrated using the veloc-
ity form of the Verlet algorithm. The simulations were done
at constant temperature. In order to thermostat the system, it
was coupled to a stochastic heat bath �17�. For a given set of
parameters �ns, macroion separation r�, we examined at least
three independent start configurations. For equilibration, runs
of 105–106 MD time steps were done, followed by a similar
number of steps to calculate time averages. Depending on
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salt concentration, the time step varied from �t=1�10−4�0
to �t=3�10−4�0 �with �0�Rct�mct / �kBT��.

IV. RESULTS AND DISCUSSION

A. Two macroions

The effective interaction between two macroions can be
measured by the quantity E�r�� 1

ZeF�r�, depending on the
separation r between the macroion’s centers. Here, F�r�
=−�V�r� /�r is the total force on a macroion projected onto
the line that connects the macroion’s centers. Figure 1 shows
E�r� for different salt concentrations, as indicated. A com-
parison to the prediction from DH theory, using ueff�r� from
Eq. �6�, with Zeff and �eff as fitting parameters, reveals a good
agreement. However, as we will show in the following, the
numerical values we obtain for Zeff and �eff can be described
neither by the DH predictions nor by the charge renormal-
ization concept, as it results in Eqs. �7� and �8�. Plotting our
data on a logarithmic scale exposes deviations from the DH
form �Fig. 2�, which seem to increase with distance and salt
concentration. We confirmed the absence of finite-size effects
by repeating some of our simulation runs in a system of
double volume, finding our results to be consistent and not
depending on the volume.

To analyze our data further, it is useful to quantify the
extent to which the Debye layers around the macroions over-
lap. To this end, we use the DH expression, Eq. �2�, to esti-
mate the inverse Debye layer thickness. According to this
definition of �, Debye layers overlap, if ��

2
� r

� −1��1. For a
given value of ns we thus define rov

�1���+2�−1 as the small-
est macroion separation where their Debye layers do not
overlap. For ��� r

� −1��1, the macroions are �partially� lo-
cated within each other’s Debye layers. For a fixed salt con-
centration, we therefore define rov

�2���+�−1. Finally, we con-
sider the limit where a macroion’s center of mass is located

within the Debye layer of the other macroion. This is the
case for ��� r

� − 1
2

��1, or rov
�3��� /2+�−1. The radii rov

�1,2,3� are
indicated in Figs. 1 and 2 as stars �connected by dashed lines
as a guide to the eye�.

As we see in Figs. 1 and 2, Debye layers overlap for
almost all parameter combinations considered. Thus, we find
a Yukawa-like potential also in the region of strongly over-
lapping Debye layers. The Yukawa form persists even for
macroion separations r�rov

�3�, where the macroions are rela-
tively close to contact. These findings are in agreement with
numerical solutions of the nonlinear PB equation for a sys-
tem of two macroions �16�. The significant deviations from
the DH fits seem to occur for nonoverlapping Debye layers
�see Fig. 2�. This might be related to the low signal-to-noise
ratio, which becomes worse for increasing values of �r. Note
that the fits in Fig. 2 use the derivative of Eq. �6� as a fit
formula for E �multiplied by −1/Ze, of course�. In a plot of
ln�rE� versus r, this implies the occurrence of a nonlinear
logarithmic term. A closer inspection of the solid lines in Fig.
2 shows indeed that the DH fits are not perfect straight lines
in the considered range of macroion separations.

Figure 3 shows the fitted values of Zeff and �eff as a func-
tion of salt ion pairs ns. Here, we have normalized Zeff by the

FIG. 1. Electric field around macroion as a function of distance
for indicated salt concentrations. Solid lines are fits to Eq. �6�,
where Zeff and �eff are used as fit parameters. Data are shifted such
that the dotted lines represent an electric field of E=0 for each
value of ns. Stars indicate critical macroion separations, as defined
in the text. Dashed lines are guides to the eye. Statistical errors are
smaller than twice the size of the symbols. In molar units, the con-
centration of added salt varies from 0 to 1.06�10−3 mol/ l.

FIG. 2. Logarithm of electric field times macroion separation vs
r for various salt concentrations. Solid lines are fits to Eq. �6� using
the same fitting parameters as in Fig. 1. Data for ns=0 are shifted by
4, ns=160 by 3, ns=320 by 2, and ns=640 by 1, respectively. Stars
and dashed lines have same meaning as in Fig. 1.

FIG. 3. �a� Effective charge Zeff normalized by the bare charge Z
and �b� effective screening parameter �eff divided by � from DH
theory �Eq. �2�� as a function of the number of salt ion pairs ns. The
parameters Zeff and �eff result from fits shown in Fig. 1 and Fig. 2
that include, as indicated, all data points with r�1.3� or only those
with r�1.82�.
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bare charge of the macroions and �eff by the screening pa-
rameter � as predicted by Eq. �2�. The fit values in Fig. 3 are
extracted from two different types of fits. In addition to fits
that include all available data points, we performed also fits
that are restricted to data points with macroion separations of
r�1.82��rov

�3�. Thus, in the latter fits, we exclude distances
for which the center of a macroion penetrates into the Debye
layer of the other one.

As one can infer from Fig. 3, �eff /� and Zeff /Z deviate
significantly from unity for all salt concentrations considered
�except for ns250, where �eff /� is close to 1�. Thus, for the
systems under consideration, DH theory does not correctly
describe the effective interactions. This indicates that a com-
bination of nonlinear effects and, possibly, microionic corre-
lations is relevant in the present case.

Of particular interest is the behavior of Zeff. For all salt
concentrations it is larger than the bare charge and it tends to
increase with increasing salt content. This effect is even
more pronounced if the fits are restricted to macroion sepa-
rations of r�1.82�. This finding is in disagreement with the
concept of charge renormalization, where one expects a de-
crease of the effective charge with increasing salt concentra-
tion. Indeed, cell model calculations using the parameters of
our MD simulations lead to Zeff0.8Z �15�.

A failure of the charge renormalization concept in the
systems considered here is not surprising. For an isolated
pair of macroions, there is no meaningful definition of a WS
cell. Hence, it is difficult to define the volume fraction �
reasonably. Provided that the WS cell can be considered as a
sphere around a macroion, we can come up with two bound-
aries: The WS cell should not penetrate the Debye layer, thus
R�rov

�1� /2=�−1+� /2. In addition, the two WS cells should
not overlap, hence, R
r /2. Note that the upper boundary
depends on the macroion separation, whereas, according to
theory, � is not a function of r. However, our simulation data
indicate that d

dr�eff is slightly different from zero. Taking into
account both limits of R, the volume fraction �=nc� �

2R
�3

should fullfill the inequality �1+ 2
��

�−1
��1/3�

�
r . With �

from Eq. �2�, the lower boundary takes values from 1.6
�10−2 �ns=0� to 9.3�10−2 �ns=1280�. The overall volume

fraction of macroions in our simulation box is given by ��
= ��3

3V 2.1�10−3. Hence, in dilute systems, �� cannot be
regarded as the relevant volume fraction for testing Alex-
ander’s charge-renormalization concept. Moreover, ���1
indicates that Eq. �9� should hold at least for small salt con-
centrations, provided that 	0 can be neglected, i.e., �eff�.
Although both values, Zeff and �eff, are not found to be in
agreement with DH theory, their relation seems to be com-
patible with Eq. �9�, as can be seen from Fig. 4. Thus, to a
good approximation, the effective salt concentration matches
the actual one, i.e., the Donnan effect is indeed negligible.

So far, we have addressed only the behavior of effective
pair forces. In order to analyze the microionic degrees of
freedom, we calculate the angular resolved negative charge-
density distribution, �−���, which we define as follows: For a
given macroion separation, we draw a sphere of radius r /2
around each macroion and project all counterions, which are
located within this fictitious “WS cell”, onto a plane that
contains the macroions’ centers �see the sketch in Fig. 5�.
nct��� is the number of counterions at angle �, which is taken
relative to the connecting line to the other macroion, and
�−��� is given by

FIG. 4. Test of Eq. �9� in the limit � ,	0→0.

FIG. 5. �Color online� Angular resolved negative charge-density
distribution around macroion �see sketch and the definition, Eq.
�11��, for the indicated salt concentrations and macroion separa-
tions. Data sets are shifted by 0, 0.05, 0.1, and 0.15 �from below�.
The solid lines are calculated from the superposition of one-particle
charge-density distributions from DH theory �for details, see the
text�.
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�−��� = 10−6nct�����mm

r
	3

. �11�

Note that �−��� is normalized via the volume of the WS
sphere, �r3 /6.

Figure 5 shows �−��� for various combinations of �r.
Four different cases are considered: For ns=0, we choose r
such that �effr��rov

�3�. For ns=320, we consider the case
�rov

�3���effr��rov
�2�. For ns=1280, we take �rov

�3���effr
��rov

�2� and �effr��rov
�1�, respectively.

For an isolated pair of macroions, the electric field around
a macroion only exhibits a spherical symmetry in the limit
�r→�. Therefore, one might expect that �−��� is not inde-
pendent of �, and thus it should reveal anisotropies. How-
ever, within the statistics of our data, we find flat distribu-
tions within the “WS cell”. This holds even for the smallest
value of �r, where the Debye layer around a given macroion
is strongly perturbed by the other macroion. The occurrence
of isotropic distributions �−��� might be due to nonlineari-
ties, which are of course not accounted for in the DH limit.
In order to rationalize this hypothesis, we checked whether
�−��� can be “reconstructed” by a naive superposition of
counterion charge distributions around a single macroion. To
this end, we considered first such single-particle distributions
as obtained from DH theory using the screening parameter �
as given by Eq. �2� and the bare charge Z for the charge of
the macroion �note that the charge distribution is just propor-
tional to the potential given by Eq. �6� in the linearized DH
limit�. Then, we projected the superposition of the latter dis-
tributions onto a cubic lattice with 108 grid points. From this,
we finally calculated �−���. The results are included in Fig. 5
as solid lines. We clearly see that the so calculated �−��� are
anisotropic, and this indicates that the flat distributions ob-
tained from the MD simulations might be due to the occur-
rence of nonlinearities.

The behavior of �−��� might also explain why the effec-
tive charge Zeff is higher than the bare charge Z, in contrast to
the prediction from the charge-renormalization concept. We
can infer from the angular distributions �−��� that there are
fewer counterions between the macroions than expected
from a naive superposition principle. This effect might be of
entropic origin, indicating that the entropy gain related to
isotropic distributions dominates over energetic contribu-
tions. However, energetically unfavored microion distribu-
tions might yield an additional repulsion between the macro-
ions, and this might explain the finding that Zeff is larger than
the bare charge.

We have already mentioned that the introduction of a
“WS cell” is not appropriate for a system of two isolated
macroions and thus cell models that lead to charge renormal-
ization cannot be applied. There is also another reason why
the concept of charge renormalization is not appropriate in
the present case. If we define the boundary of the �spherical�
“WS cell” by the sphere of radius R=r /2 around a macroion,
this cell is not a neutral object, i.e., the total charge inside the
cell is nonzero. This is in contrast to the assumptions of
Alexander’s cell model, which is not applicable for small
macroion separations.

However, it is instructive to study the total charge of the
“WS cell” for our system. Charge neutrality requires

Z��m

2R
	3

+ �
0

2�

d��+��� = �
0

2�

d��−��� , �12�

where �+��� has an analogous definition as �−���, but now
the number of counterions at angle � is replaced by the cor-
responding number of coions. It follows from Eq. �12� that

Q�R� � 1 +
1

Z
� 2R

�m
	3�

0

2�

d���+��� − �−���� �13�

should vanish if the overall charge within the “WS cell” is
zero. In Fig. 6, we show Q�R� for a fixed salt concentration
of ns=1280. It is compared to an estimate that follows from
DH theory: Suppose the counterion density around a macro-
ion is given by an expression of the DH form,

��r� =

	 exp�− ��r −
�

2
	�

�1 +
��

2
	r�B

2

, �14�

where 	 is a dimensionless normalization constant. Since
Q�R�=1− 1

Z�V�r�d
3r��r�, the total charge reads

Q�R� = 1 −
4�

Z
�

�/2

R

drr2��r� = 1 −
4�	

Z�B
2�1 +

��

2
	�

�

2�
+

1

�2

− �R

�
+

1

�2	exp�− ���R

�
−

1

2
	�� . �15�

The normalization constant introduced in Eq. �14� is deter-
mined by the boundary condition Q�R→��→0, thus 	

=
Z�B

2 �1+��/2�

4���/2�+1/�2� . Hence, the charge inside the fictitious WS cell

of radius R is given by the expression

FIG. 6. Deviation from charge neutrality within “WS cell”, mea-
sured via Q�R�, as defined in Eq. �13�. Data are plotted for ns

=1280. Results are compared to Eq. �16�, using � from Eq. �2�
�solid line� and �eff �dashed line�.
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Q�R� =
1 + �R

1 +
��

2

exp�− ���R

�
−

1

2
	� . �16�

Note that the second boundary condition, Q�R= �
2

�=1, is in-
trinsically fulfilled. If we identify the inverse screening
length as � from Eq. �2�, Eq. �16� slightly underestimates
Q�R�. Replacing � by the effective inverse screening length
leads to an almost perfect agreement with the results of our
simulations.

B. Three macroions

In this section, we consider systems with three macroions
in two different geometries by placing them along a line or at
the corners of an equilateral triangle.

In general, the interaction energy for three particles can be
written as

V�r� = V12�r12� + V13�r13� + V23�r23� + V123�r123� , �17�

where Vij�rij� is the pair potential between particle i and j.
The last term on the right-hand side represents the three-
body interactions.

We measure the force on the outermost particle �particle
“1”� and define the relative deviation of the electric field
with respect to the expectation for pairwise additivity by

� �

�

�r
�V�r� − V�r12� − V�r13��

�

�r
V�r�

=
E�3� − E�2�

E�3� . �18�

Here, E�2� is the superposition of the two-body interactions
calculated in the previous subsection, whereas E�3�

=− 1
Z

�
�rV�r� follows from the force acting on the outermost

particle in the three-macroion configuration.
For the coaxial geometry, the pair contribution is given by

E�2�=− 1
Z

�
�r�i�1V�r1i�. In the configuration of an equilateral

triangle with side length R, one has to take into account that
the forces do not act along the same direction. If we denote

the positions of the macroions by R� i �i=1,2 ,3�, the effective

force F�R� is given by the total force F� 1 on particle 1 pro-

jected onto the difference vector d� =R� 1− 1
3 �R� 1+R� 2+R� 3�,

F�R� = F� 1 ·
d�

�d� �
. �19�

Thus, the two-body contribution in the equilateral triangle is
E�2�=− 1

Z
�
�r�i�1V�r1i�cos�� /6�.

Results for the coaxial geometry are displayed in Fig. 7,
where the deviation � from pairwise additivity is plotted as a

function of the parameter fov
ca � ��

2
� �r12+r23�

� −1�. The quantity
fov

ca describes the overlap between the Debye layers around
the three macroions. For fov

ca �1, the three Debye layers ex-
hibit an overlap.

One can infer from Fig. 7 that the three-body interaction
between the macroions yields attractive corrections to pair-

wise additivity. At small salt concentration, i.e., if fov
ca is sig-

nificantly smaller than one for a given distance between the
macroions, three-body corrections are most pronounced and
they are weakly dependent on fov

ca. But if fov
ca reaches values

that are of the order of 1, the parameter � increases rapidly
and seems to vanish at high values of fov

ca. Thus, three-body
contributions are of importance if there is an overlap be-
tween the three Debye layers. This shows that the range of
three-body contributions is of the order of the Debye length
and thus the concept of screening is also very useful for the
discussion of many-body effects.

It is interesting that the three-body terms are much
smaller in the coaxial geometry if the distance between
neighboring macroions is close to contact. This corresponds
to the data for r12=r23=1.3� in Fig. 7. In this case, the pair
interaction is probably the most important contribution be-
cause the three-body force on the outermost particle is effec-
tively screened out by the particle in the middle.

In the case of an equilateral triangle, the condition for
three overlapping Debye layers reads fov

tr ���� r
�3�

− 1
2

��1.
Using the same values of � and r for both geometries leads
to fov

tr � fov
ca, thus, in the triangular configuration, the Debye

layers exhibit a stronger overlap.
In Fig. 8, three different geometries for the macroion

triple are compared: �i� an equilateral triangle with side
length r=1.3�, �ii� an equilateral triangle with side length
r=1.82�, and �iii� the coaxial geometry with r=r12=r23
=1.3�.

The strongest triplet interactions are revealed for case 1.
Different from the coaxial geometry, the magnitude of the
parameter � increases with decreasing distance r between
the particles in the triangle. This can be easily understood
since the interaction between the three macroions in the tri-
angular geometry is not effectively screened by one of them
but only by the microions in the Debye layers. For case 1,
the magnitude of the parameter � also seems to increase with
increasing fov

tr . As of yet, we do not have an explanation for
this behavior.

FIG. 7. Relative deviation � of electric field around the outer-
most macroion in the coaxial geometry as compared to expectation
for pairwise additivity for different distances r12 and r23 between
the particles.
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Comparing cases �ii� and �iii�, we see that deviations from
pairwise additivity are similar in both cases, and the overlap
parameters fov

tr and fov
ca have comparable values. A similar

feature has been found in a numerical solution of the nonlin-
ear PB equation by Russ et al. �16�. These authors report that
the three-body potential is independent of geometry if the
sum over the distances between neighboring particles is con-
stant.

We would like to point out that there is always a trivial
contribution to the many-body potential, which stems from
an increased microion concentration associated with the ad-
dition of macroions. Thus, for a fixed volume, the effective
screening length of the system is decreased. A comparison
between the measured three-body term, E�3�, and the two-
body contribution, E�2�, taken from the pure two-macroion
case should therefore in general yield a nonpairwise additiv-
ity. From that point of view, DH theory already predicts a
correction to pairwise additivity.

Similar to the previous subsection, we calculate the angu-
lar resolved charge-density distribution around the outermost
macroion �see Eq. �11��. In order to account for the differ-
ences between coaxial and triangular geometry, we introduce
an angle �0, such that the system is symmetric around �
=�0. Thus, we have to choose �0=0 for the coaxial geometry
and �0=� /6 for the equilateral triangle.

As Fig. 9 shows, the charge distribution for the three-
macroion case is not isotropic. From Fig. 9 we can infer that
the onset of anisotropy is correlated with nonpairwise addi-
tivity. Consistent with the behavior of the parameter � in
Fig. 8, the choice of the same value of r leads to a stronger
anisotropy for the triangle as compared to the coaxial geom-
etry. As done in the previous section, we compare our charge
distribution to the one that follows from a naive superposi-
tion of the DH distributions. Surprisingly, for the three-
macroion configurations, this superposition seems to work
very well.

V. CONCLUDING REMARKS

We performed classical MD simulations in order to inves-
tigate effective interactions between isolated pairs and triples
of charged macroions in the framework of the primitive
model.

On the pair level, these interactions are surprisingly well
described by the DH limit of the PB equation. In particular,
there is no evidence for charge renormalization as predicted
by cell models. These models would predict an effective
charge that is considerably smaller than the bare charge of
the macroion �6,7,15�. This finding is not due to finite-size
effects in the simulation that might emerge if the Debye
length exceeds the size of the simulation box. It rather fol-
lows from the fact that the cell model must not be applied to
systems of isolated macroions. This means that the concept
of charge renormalization might be relevant for bulk sys-
tems, but, in the case of systems of isolated macroions, simu-
lations should be compared to direct solutions of the nonlin-
ear PB equation.

In this work, we have studied systems with salt concen-
trations of the order of 10−3 to 10−4 mol/ l, and we have con-
sidered configurations for which the Debye layers of the dif-
ferent macroions exhibit a strong overlap. An interesting
result of our simulations is the occurrence of repulsive cor-
rections to DH theory: For the macroion pair, we find effec-
tive macroion charges that are slightly higher than their bare
charge. Similar results have been reported in previous work,
e.g., in an ab initio density-functional-theory approach �14�,
where the ratio between effective and bare charge was found
to be between 1.06 and 1.38, depending on salt concentration
and the value of the bare charge. A “repulsive correction to
DH theory” is also indicated by the isotropic charge distri-
bution around the macroion in the case of the macroion pair.
Such an isotropic distribution is not expected from a naive
superposition of one-particle density distributions as ob-
tained from DH theory. Hence, there seem to be fewer coun-
terions between the macroions than expected from DH
theory, which can be related to an increase of the effective

FIG. 8. Relative deviation of electric field around the macroion
as compared to expectation for pairwise additivity vs overlap factor
fov �see text�. Triangular symbols represent triangular setup, circles
represent coaxial geometry.

FIG. 9. Negative charge-density distribution for the three-
macroion case, comparing the coaxial geometry to the triangular
configuration. The latter is shifted by −0.05. The macroion separa-
tion is fixed to r=1.3�. Salt concentration is ns=0 �left� and ns

=1280 �right�, respectively. Solid lines have same meaning as in
Fig. 5.
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charge. The microscopic origin of this effect is not clear, but
it might be of entropic origin.

In agreement with previous analytical �10�, numerical
�12,16,18�, and experimental studies �8,9� of systems with
three isolated macroions, we find that corrections to nonpair-
wise additivity �and thus the three-body terms in the effec-
tive potential� are attractive. The strength of these attractive
contributions is strongly correlated with the overlap of all
three Debye layers. This shows that the concept of a screen-
ing length is also very useful to quantify the effect of three-
body interactions. Different from the case of two macroions,
the charge distribution in the three-macroion case is aniso-
tropic. In this case, the simple superposition of three one-
particle density distributions from DH theory yields a rather
good description of the charge distribution in the three-
macroion case. This finding seems to agree with a recent
numerical solution of the PB equation for three isolated mac-
roions �16�.

In further simulation studies, we will investigate interac-
tions between more than three particles to understand the
crossover to bulk effective interactions. In the latter case, the
concept of charge renormalization seems to work very well.
Our present simulations suggest that many-body interactions
in bulk systems yield renormalized charges that can be much
smaller than the bare charges of charged colloidal particles.
A profound understanding of these issues might also provide
new insight into electrophoresis experiments �19,20�.
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